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Object Detection?

@ GOAL: detect objects in images or video frames

@ Sometimes also detect several object classes simultaneously
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Object Detection?

@ GOAL: detect objects in images or video frames

@ Sometimes also detect several object classes simultaneously

Object Detection:
A solution to treat the ever growing amount of images and video frames:

Embedded cameras

Security cameras

o
@ Mobile phones
o
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Object detection is not a so easy task:

@ objects can have multiple scales

objects can be partially hidden

@ object classes can look similar
» ex: lions and cats

@ in a same object class we can have different textures, colors, etc
» ex: human people wearing different clothes

@ objects can have multiple orientations and postures

o Etc.
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On top of that, object detection can have other constraints:

working in real-time

working in embedded systems
» ex: cars, UAVs, etc.

working whatever the weather conditions

working at night
o Etc.
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Examples of application:

@ Advanced Driver Assistance System (ADAS)

@ Video surveillance:
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@ Robots

o Face detection

o Etc.
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© How to detect objects in images?
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Let's see how to find these monkeys.
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Searching at multiple locations

e Sliding Window (bruteforce):
Exhaustive scan of the image
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Searching at multiple locations

@ Sliding Window (bruteforce):
Exhaustive scan of the image

o Generate region proposals:
Info-rich regions are proposed
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Searching at multiple locations

e Sliding Window (bruteforce):
Exhaustive scan of the image

o Generate region proposals:
Info-rich regions are proposed

> Selective Search algorithm
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Searching at multiple scales
(usually paired with a sliding window approach)

@ Analysis window
> Fixed size
o Image pyramid

» Down-scaled levels for big
objects

» Up-scaled levels for small
objects
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Finding clues of the presence of an object in the window (visual features)

@ Visual features
» Colors
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Finding clues of the presence of an object in the window (visual features)

o Visual features

» Colors
» Shapes
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Finding clues of the presence of an object in the window (visual features)

o Visual features
» Colors
» Shapes
» Depth

How to detect objects in images? Finding clues 16 / 49



Finding clues of the presence of an object in the window (visual features)

o Visual features

» Colors
Shapes
Depth
Movements
Etc.

vV v vy
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Analyze the collected visual features and ... decide!

Is a monkey?

o Classify
’-_) Yes / No » Monkey's visual features: Yes

o ||III| » or not: No
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Analyze the collected visual features and ... decide!

o Classify

» Monkey's visual features: Yes

”
Is a monkey? » or not: No

—>-—> Yes / No
o I| | e With Deep learning (part 4)
> All these steps may be

combined together
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Because detection windows are analyzed at nearby locations the detector
may trigger several detections nearby object instances:

Algorithm 1 Non-Max Suppression
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One way to only keep the best detections (having the highest scores) is to
use: Non-Maximum Suppression(NMS).
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© Training the blackbox with Machine Learning
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The blackbox (classifier) can be trained with Machine Learning

o Papageorgiou et al: First attempt to train a classifier with SVM

Training Initial Training Set

Initial Training Set

Bootstraping

False Positives
e

Classifier

False Positives
"oy

v

[]
Pedestrian Pedestrian
Detection Detection
System System
49
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In order to train the classifier we need a lot of examples:

@ images of object (ex: images of people)

@ images of random background

B ™
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Then, we can train the classifier with a Machine Learning algorithm:

Support Vector Machine (SVM)

@ Goal: Maximize margin of class separating

X1 4 i 4

hyperplane
P 1 yperp
| +
oy ~ - @ How: Lagrangian dual problem optimization
P T T % X,
+ i - @ +: positive class (people)
i @ -: negative class (background)
Boosting (AdaBoost)
o Xy Xy +
+ + o+ - * + o+ - A F A
+ o + . P v
% —~* %, %
+ # '
' @ Goal: Train discriminative classifier (H) made of
m @) : (€} weak classifiers (h;)
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Improvements of Machine Learning-based Object Detection:

o Faster classifier inference (Soft-Cascade Boosting):

2004 . Rejection
race
Not object @

Not object

Object class
150

100

Background class

Not object Object

o Part-based detector for articulated objects (DPM/Latent-SVM)

. L | L L
0 500 1000 500 2000

» Classifier form:
Root Part  Deformation f(X) = maXz ( w. H(X7 Z))

filter filters weights

* w: support vectors
* z: latent variables

» Training, initiate w and iterate:

* Fix w and find z (part positions)
* Fix z and solve w (classic SVM)

Training the blackbox with Machine Learning Reaching the ceiling of model improvements 25 / 49



Finer and finer visual features extraction:

e Histogram of Oriented Gradients

i

Integral image
B Sum of all pixels in
, , D= 14+4-(2+3)
T > 1 = A+(A+B+C+D)-(A+C+A+B)
h A =D

o
4 J]m =t
o
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Machine Learning for Object Detection

No big improvements until 2014, until the democratization of Deep
Learning for Object Detection.
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@ Deep Learning
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Deep Learning permitted the come back of Artificial Neural Networks:

o Artificial Neural Networks (ANN) exist for a very long time (50's)
@ But for a long time, performances obtained with ANNs = not

satisfactory

@ Deep Learning, means learning a network with more than 4/5

hidden layers

Artifical Neural Networks recalls:

<7 MY
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hellbe :

Output layer

Deep Learning

@ All the weights w; between all the

nodes constitutes the model

@ Nodes output values with respect to an

activation function f and weights w;

@ trained by back propagation (gradient

of loss)

@ Goal: optimize a loss function on

weights w;
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The reemergence of ANNs with Deep learning is due to several factors:

Fixing vanishing gradient (ReLU, Normalized Init, ResNet,
BatchNorm...)

Fixing exploding gradient (Gradient norm, Normalized Init and
clipping...))

More data available everywhere

» increasing amount of unstructured data (videos, images, Etc.)
» collaborative labeling approaches (Amazon Mech. Turk, CVAT, Etc.)

Increasing processing power (NVIDIA TITAN V GPU, Etc.)
New "layers" (RNN, LSTM, Dropout, Attention, Transformer...)
Others... (Deep Reinforcement Learning,...)

The case of Object Detection

Amongst the different types of ANNs: Convolutional Neural Networks
(CNNs) are particularly suitable in Computer Vision, and thus for Object
Detection.
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Machine Learning Deep learning

&o@ﬂ;:;i [=]

H
b
Performance

output Amount of data

Advantages:
@ No need of difficult feature engineering (like: HOG, ICF and ACF))

» Features will be learned during the training, in incremental way
@ Huge number of parameters: greater amplitude of improvement
@ Fast inference
Disadvantages:
@ Longer to train (ML models are usually faster to train
@ Require a lot more training data (big number of parameters)
@ Blackbox... almost impossible to explain how the trained model works
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The Convolutional Neural Network (CNN) is as follow:

Convolution - . Pooling Convolution Pooling "soft-max"

D

L -
== — ;;ﬁ

Input Image

)
)

Feature maps Pooled feature maps Feature maps Pooled feature maps

e Convolution: local pixels are connected to the same pool node

@ Pooling: features computed in the convolution layers are aggregated
(max or average over a pool)

@ Images = many pixels, thanks to CNN: we don’t need a
tremendeous number of connections
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Some of the major breakthroughs in Object Detection with Deep Learning:

AlexNet

R-CNN

Fast R-CNN

Faster R-CNN

ResNet

Feature Pyramid Network
RetinaNet

Yolo

EfficientNet
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AlexNet:

@ Two floors network architecture (trained and

inferred by 2 GPUs)

Made of CNN layers

Using non-linear ReLU activation functions

80 millions of parameters to train

Dropout + Data augmentation to avoid

over-fitting

@ AlexNet is the first DNN to win the ImageNet contest:

» 1.6 millions of images, 1000 object classes
» drop to 37.5% error rate (previous best: 45.1%)
» A major breakthrough at that time
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AlexNet:

@ Two floors network architecture (trained and

inferred by 2 GPUs)
Made of CNN layers

RelLU activation functions

80 millions of parameters to train

Dropout 4+ Data augmentation to avoid

over-fitting

o AlexNet is the first DNN to win the ImageNet contest:
» 1.6 millions of images, 1000 object classes
» drop to 37.5% error rate (previous best: 45.1%)
» A major breakthrough at that time

But ...

A breakthrough in Object Recognition and not in Object Detection
(detecting = recognizing objects at different scales and locations)
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Region-based CNN (R-CNN):

@ A solution to the detection problem

person? yes.

\

@ Use Selective Search to generate region proposals

to analyze -
2. Extract region 3. Compute 4. Classify
image | proposals (~2k) CNN features regions

@ The CNNs are only used to generate features

T . . Selective Search
@ Classification is performed using old-school linear

SVMs

@ 53.7% of mAP PASCAL 2010 (previous best: | ™=

33.4%)
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Region-based CNN (R-CNN):

@ A solution to the detection problem = 4 ef region _facroplane?no. |
@ Use Selective Search to generate region proposals %
\ = o ] CNNiN, :
to analyze = 8=
1. Input | 2. Extract region 3. Compute 4. Classify
image roposals (~2k CNN features regions
@ The CNNs are only used to generate features € prop 20 s
™ . . . . Selective Search
@ Classification is performed using old-school linear

@ 53.7% of mAP PASCAL 2010 (previous best: e v o et

= “ ﬂ ﬁ

But ...
R-CNN is slow:

@ Selective Search is slow...

@ Features has to be recomputed with the DNN for each region proposal
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Fast R-CNN:

@ Still use Selective Search to generate region proposals
@ Compute all the features of the input image once and use ROI
Pooling

» Similar to other CNN's pooling techniques

» But used to extract region proposal features

» Output feature vectors of size Nx7x7x512 fed to fully connected layers
» Classification is performed by a softmax (no external classifiers)

onect
op=iNxC]

60
40
Backbone
CNN (VGG)
512

ROI Pooling

Fast RCNN Network

VGG is an improvement of AlexNet (using fixed size kernel for convolution)
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Faster R-CNN:

@ Region proposals generated by neural network
» Using anchors on a grid: evaluating 3 anchor boxes per cell
» Analyzing anchor boxes permit to extract region proposals

@ Now two parts to train independently:
» Region Proposal Network (Backbone + RPN)
» Classification Network (Backbone + Head)

@ The generation of region proposals is now faster and improved

@ Although training is trickier, inference is now faster

f Fast RONN

-;n =

Objeet-like regions proposed
feature map | wOt st ¢

St e
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ResNet (Backbone):

@ Residual Mapping: skipped connections (inspired

by biological neurons) x

weight layer

@ Residual Mapping permit to reduce accuracy
saturation drastically ide):(ity
> Beginning of train: few layers trained F(x) +x

(skipped connections)

P> Restore the skipped layers as it learns the

feature space

»  This approach permit a more gradual

it Remoa
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exploration of the feature space

@ With this approach learning is faster (reducing

even more the vanishing gradient problem)

Results:

@ The architecture of the network can have >100 layers with this!
@ 19.38% error rate on ImageNet! (previous best: 37.5%)
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Feature Pyramid Network or FPN (modify the backbone):

@ Until now: object scaling problem was not directly addressed
@ FPN permits to generate multiple feature map at multiple scales:

» A top-down pathway restores resolution with rich semantic information
» Lateral connections add more precise object spatial information

@ Improve accuracy by 8 points on COCO, 12.9 points for small objects
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You Only Look Once (YOLO):

A unified approach: one network for all

End-to-end training (one network):

gl

nv.Loyers  Conn.Loyer  Conn. Loyer

»  Predict bounding boxes and classes

-1 i i Conv. Layer Conv. Layer Conv. Layers. Conv. Layers. Conv. Layers  Cor
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Above, predictions are encoded ina S X S X (B * 5 4+ C) tensor, where, S =7, B = 2 and C = 20: 20 object
classes, 2 bounding boxes, 4 spacial information (x, y, w, h) and a confidence score
Alternative: the regression approa
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EfficientNet (Backbone) (2020)

Before: no real scaling guideline when designing a backbone
Based on the intuitions that we should coordinate and balance the scaling of the dimensions

EfficientNet are optimized in width, depth and resolution networks

EfficientNet-B0 achieves 77.3% accuracy on ImageNet:

> With only 5.3M parameters!

P Resnet-50 provides 76% accuracy with 26M parameters

@ Since EfficientNet have less parameters, there are faster

P
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YOLO v4 (2020):

@ This is YOLO, on steroids...
@ Still a regression approach
@ But embeds improvements of other detectors:
» SAT Data Augmentation, New Loss, DropBlock, Etc.
» SPP/PAN, Attention layers, Etc.
@ Achieves state-of-the-art results in real time on MS COCO:
» 435 % AP
» 65 FPS on a Tesla V10

CSPDarknet53 SPP + PAN YOLOv3

Dense Prediction

3

Input Backbone

3
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© Conclusion
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To conclude:

@ Former Machine Learning approaches for OD: obsolete
@ Performances improved thanks to Deep Learning
@ Year after year, Deep Learning-based Object Detection becomes ...
» ... simpler (one step training, etc.)
» ... more accessible (cheaper and cheaper powerful GPU, etc.)
» ... more accurate (new optimization, etc.)
> ... speeder.
@ Trend 1: one unique network for all detection steps
@ Trend 2: optimized networks

@ Trend 3: important re-usage of techniques and tricks

In CVPR 2021: detection in 3d (point cloud)

The course continue...
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MS COCO dataset:
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PASCAL VOC 2007 dataset:
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